
“Getting Started with the ADVGRtmpl8-2022”

This template is only the current final evolution of a long list of ‘templates’, that started with EasyCE,

a minimalistic code base for writing Windows CE games / graphics applications without worrying

about OS base code. It evolved though Tmpl8 in various versions for IGAD, then UU, then IGAD

again, and in the meantime it has been used to start virtually all my personal mini-projects. In

practice, it is great as a basic starting point, but very limited at the same time. Good for teaching.

To use the template:

▪ you simply extract it from the zip file to a directory of your choice

▪ you open the .sln file using Visual Studio (versions 2019 and later).

At the time of writing, Visual Studio 2022 Community Edition is an excellent choice. Get it for free,

install it using the default options, and you’re good to go.

The magic (as seen on the right) happens in game.cpp:

#include "precomp.h"
#include "myapp.h"

TheApp* CreateApp() { return new MyApp(); }

// ---
// Initialize the application
// ---
void MyApp::Init()
{
 // anything that happens only once at application start goes here
}

// ---
// Main application tick function - Executed once per frame
// ---
void MyApp::Tick(float deltaTime)
{
 // clear the screen to black
 screen->Clear(0);
 // print something to the console window
 printf("hello world!\n");
 // plot some colors
 for(int red = 0; red < 256; red++) for(int green = 0; green < 256; green++)
 {
 int x = red, y = green;
 screen->Plot(x + 200, y + 100, (red << 16) + (green << 8));
 }
 // plot a white pixel in the bottom right corner
 screen->Plot(SCRWIDTH - 2, SCRHEIGHT - 2, 0xffffff);
}

The default example code shows you the basic functionality implemented by the template:

▪ A window is opened.

▪ A pixel is plotted using screen->Plot(x, y, color).

▪ The size of the screen can be obtained from SCRWIDTH and SCRHEIGHT.

▪ A ‘color’ is a 32-bit unsigned value, where red starts at bit 16, green at 8 and blue at

0. Each color component has a range of 0..255.

▪ You can write debugging info to the text window using printf.

https://www.flipcode.com/archives/12-11-2000.shtml
https://github.com/jbikker/tmpl8
https://www.3dgep.com/cpp-fast-track-2-template/
https://www.cs.uu.nl/docs/vakken/mov/2018/
https://visualstudio.microsoft.com/vs/community/

From here: draw your own images using screen->Plot and other Surface methods, handle

keys and mouse input using the methods of the MyApp class (see myapp.h) and add .cpp and

.h files to extend and structure your project.

Basic math classes can be found in precomp.h (starting at line 272). Here you will find

float2, float3, float4 as well as int and uint counterparts, with an extensive set of

operators. There are also basic classes for storing bounding boxes and for matrix

calculations. As with the rest of the template, this serves as a basis; you may find it desirable

to add some code of your own depending on what your project needs.

Advanced users may benefit from the integration of OpenCL; see the GPGPU section later

in this document. The math classes are designed to work well with the OpenCL functionality.

Useful things

In the precomp.h file you will also find the class JobManager, which you can use to run your

code on multiple CPU cores. A quick overview of how it is used:

Do once (e.g. in MyApp::Init), to initialize the job system:

JobManager::CreateJobManager(8 /* your logical core count */);

Then, for the actual parallel code:

JobManager* jm = JobManager::GetJobManager();

for(int i = 0; i < jobCount; i++) jm->AddJob2(&theJob[i]);

jm->RunJobs();

Here, theJob is an array of objects of a class derived from Job, which must implement Main():

class theJob : public Job { public: void Main() { /* work */ }; }

A high-resolution timer is also provided. See struct Timer for details. A timer is created in an

arbitrary scope and queried using its elapsed method:

Timer myTimer;
for (int i = 0; i < 10; i++)
{
 myTimer.reset();
 // ... do something ...
 printf("iteration took % f milliseconds.\n", myTimer.elapsed() * 1000);
}

GPGPU*

The template provides OpenCL support to deploy the GPU in your calculations. It’s use is

demonstrated in the #if 1 / #endif block in myapp.cpp:

static Kernel* kernel = 0; // statics should be members of MyApp of
course.
static Surface bitmap(512, 512); // having them here allows us to disable the OpenCL
static Buffer* clBuffer = 0; // demonstration using a single #if 0.
if (!kernel)
{
 // prepare for OpenCL work
 Kernel::InitCL();

https://www.khronos.org/opencl/

 // compile and load kernel "render" from file "kernels.cl"
 kernel = new Kernel("cl/kernels.cl", "render");
 // create an OpenCL buffer over using bitmap.pixels
 clBuffer = new Buffer(512 * 512, Buffer::DEFAULT, bitmap.pixels);
}
// pass arguments to the OpenCL kernel
kernel->SetArgument(0, clBuffer);
// run the kernel; use 512 * 512 threads
kernel->Run(512 * 512);
// get the results back from GPU to CPU (and thus: into bitmap.pixels)
clBuffer->CopyFromDevice();
// show the result on screen
bitmap.CopyTo(screen, 500, 200);

The code demonstrates the most important steps in writing GPGPU code: loading and

compiling a kernel, creating buffers to pass data between ‘host’ and ‘device’, setting kernel

arguments, executing a kernel on the device, and retrieving data from device to host.

A full OpenCL tutorial is outside the scope of this document. If you want to see an example

of OpenCL used in the ADVGRtmpl8, please refer to the voxel template on GitHub.

Note that unlike plain OpenCL, the template allows you to use #include files in your OpenCL

code. The most common use case for this is the common.h file, which gets included by

myapp.cpp (via precomp.h) and the example kernels.cl file, to share the default screen

resolution between host and device code.

The template also makes some definitions available to your OpenCL code:

▪ ISNVIDIA will be defined if your code is running on NVIDIA hardware;

▪ ISAMD and ISINTEL provide the same info, but for AMD and Intel;

▪ Advanced users can use ISAMPERE, ISTURING, ISPASCAL to write code specific

to an NVIDIA architecture.

Go Forth and Code

That should do the job for now; if you have any questions do not hesitate to contact me:

bikker.j@gmail.com / j.bikker@uu.nl / bikker.j@buas.nl

*: the use of GPGPU is totally optional and only provided for your enjoyment.

https://github.com/jbikker/WrldTmpl8
mailto:bikker.j@gmail.com
mailto:j.bikker@uu.nl
mailto:bikker.j@buas.nl

